代表キーワード :: 幾何学概論

資料:29件

  • S0639 幾何学概論 設題2
  • 第2設題 1. (1)(2) {an},{bn}がコーシー列により,∀ε>0に対して,n,m≧n1のとき,|an-am|<ε/2となる自然数n1が存在する。 同様に,n,m≧n2のとき,|bn-bm|<ε/2となる自然数n2が存在する。 n0=max{n1,n2}とした場合,n,m≧n0のとき,…n,m≧n1にもn,m≧n2にもなる。 |(an...
  • 1,100 販売中 2009/05/11
  • 閲覧(2,139) コメント(1)
  • S0639 幾何学概論 設題1
  • 第1設題 1. (x,y)∈(左辺) ⇔(任意のλ∈Nに対して、x∈Aλ)&(任意のμ∈Mに対して、y∈Bμ) ⇔任意の〈λ,μ〉∈N×Mに対して、x∈Aλ&y∈Bμ ⇔任意の〈λ,μ〉∈N×Mに対して、(x、y)∈Aλ×Bμ ⇔(x、y)∈(右辺) よって(左辺)=(右辺) 2 写像φ:X/...
  • 1,100 販売中 2009/05/11
  • 閲覧(2,643) コメント(3)
  • 幾何学概論-科目最終試験問題集
  • Xを異なる3点a,b,cの集合とする。このとき、X上の位相は幾通りあるか。 すべてを列挙せよ。 {φ、X } {φ、{a},X} {φ、{b},X} {φ、{c},X} {φ、{a,b},X} {φ、{a,c},X} {φ、{b,c},X} {φ、{a},{b,c},X} {φ、{b},{c,a},X} {φ、{c},{a,b},X} {φ、{a},{a,b},X} {φ、{...
  • 11,000 販売中 2009/07/21
  • 閲覧(2,057) コメント(1)
  • 幾何学概論-設題-1
  • 1. 集合 X の2つの部分集合族{Aλ:λ∈N},{Bμ:μ∈M}について (∩{Aλ:λ∈N})×(∩{Bμ:μ∈M}) =∩{Aλ×Bμ:〈λ,μ〉∈Λ×M}を証明せよ。 <x,y> ∈(∩{Aλ:λ∈N})×(∩{Bμ:μ∈M}) ⇔ x∈∩{Aλ:λ∈Λ} かつ y ∈∩{Bμ:μ∈Μ} ⇔ ∀λ...
  • 11,000 販売中 2009/07/21
  • 閲覧(1,672) コメント(1)
  • 幾何学概論設題1
  • 1. 2.(1) 2.(2) 3. 集合 A、B の濃度が等しいことを、ここでは「A~B」で表す。 無限集合 A、可算無限集合 N に対して、 A∪N ~ A が成立することを証明する。 A は無限集合であるから、単射 f : N → A が存在する。このとき、f(N) ~ N であり、 A∪N = (A\f(N))∪f(N)∪...
  • 11,000 販売中 2008/04/10
  • 閲覧(2,900)
  • 幾何学概論-設題-2
  • 1. Qの中の2つのコーシー列{an}∞/n=1,{bn}∞/n=1について、 次の問いに答えよ。 (1) {an+bn}∞/n=1 はQの中のコーシー列であることを証明せよ。 例. Qの中の数列 {an}∞/n=1について、任意の正の有理数εに対して、 十分大きな自然数Nが存在して、自然数m,nが...
  • 11,000 販売中 2009/07/21
  • 閲覧(1,491) コメント(1)
  • 幾何学概論設題2
  • 1.(1) (2) 2(1) (2) 3(1) (2) 4(1) (2) ( 3 )
  • 11,000 販売中 2008/04/10
  • 閲覧(2,646)
  • 佛教大学 幾何学概論参考
  • 集合Xの2つの部分集合族 、 について、 を証明せよ。 2.fを集合Xから集合Yへの全射とする。Xの任意の2つの元x1,x2についてx1~x2をf(x1)=f(x2)と定めるとき、つぎの問いに答えよ。 (1)~はX上の同値関係であることを証明せよ。 (ⅰ)x~x ⇔f(x)=f(x) (ⅱ)x1~x2 ⇔f(x1)=f(...
  • 880 販売中 2010/04/18
  • 閲覧(2,661)
  • S0639 幾何学概論 最終試験パート1
  • S0639 幾何学概論 最終試験 パート1 以下の問題の解説をします。 1 3つの命題p、q、rについて、次の等式を真偽表を用いて説明せよ。 2 Xを自然数全体の集合Nの部分集合全体とするとき、|X|>アレフゼロを証明せよ。 3 ユークリッド平面R^2の部分集合族{An:n...
  • 550 販売中 2010/05/11
  • 閲覧(1,505)
資料を推薦する
会員アイコンに機能を追加
ファイル内検索とは?
広告